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1. Introduction
As technology advances, the complexity of circuit de-
signs is continuously growing, whereas the design cycles 
become even shorter. Consequently, circuit simulation 
can easily become the bottleneck for design verification. 
An analog simulator, therefore, must deal with a larger 
number of advanced devices, while still maintaining the 
same level of accuracy for a given simulation time. 

In order to cope with this increasing pressure on the 
simulator’s performance, SmartSpice has introduced a 
new simulation engine: HPP (High Performance Parallel). 
SmartSpice HPP takes advantage of the modern multi-
core hardware platforms to speed up all internal aspects 
of transient simulations of analog circuits.

One of the main differences of SmartSpice in HPP mode 
is its partition-based simulation, where partitions will be 
processed in parallel and the matrix loading stage, linear 
solver operations, as well as general transient simulation 
steps are sped up. Further improvements can also be 
achieved when the block isomorphism and block latency 
features are enabled. Finally, one can extract the most 
out of SmartSpice HPP for post-layout simulation when it 
is used in conjunction with Jivaro for parasitic reduction.

In this application note, we describe SmartSpice HPP, 
how it works, and how to use it in order to provide fast and 
accurate transient simulations on a variety of designs, from 
medium- to large-size circuits, either pre- or post-layout. 
We also demonstrate in this application note multiple usage 
modes, so one can see that SmartSpice HPP can not 
only be up to 8x more scalable than regular SmartSpice, 
but it can also be up to 40x faster, while still keeping 
acceptable accuracy.

The rest of this document is organized as follows. In 
Section 2, we introduce the concept of Bordered Block-
Diagonal form, an important topic to better understand 
SmartSpice HPP and its advantages. Section 3 introduces 
HPP’s circuit partitioning approaches, whereas Section 4 
focuses on its matrix partitioning strategies. In Section 5, 
we present two other important features from HPP: block 
isomorphism and block latency. Section 6 briefly introduc-

es Jivaro as an RCL-reduction engine to speed up simulation 
time in SmartSpice. In Section 7, we present how one can 
use SmartSpice HPP and all the features presented in this 
application note. Section 8 presents some experimental 
results, whereas Section 9 presents our final remarks. A 
quick summary is presented in Section 10. 

2. Bordered Block-Diagonal (BBD) Form
In order to enable parallelizable methods to solve linear 
systems, one can reorganize the system matrices into a 
Bordered Block-Diagonal (BBD) form. Figure 1 illustrates 
how a Global Matrix can be reordered in a BBD form.

To enable the desired parallelization, the BBD form fol-
lows a divide-and-conquer approach. For this, from a “di-
vide” perspective, it splits the problem of solving a large 
matrix into smaller submatrices that can be solved inde-
pendently. Then, from a “conquer” perspective, it relies 
on linking these submatrices together by using the so 
called “border matrices”, which are used to complete the 
solution of the original large matrix.

Figure 1. A Global Matrix represented in BBD Form.
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From a SPICE simulation point of view, the global matrix 
is reorganized into submatrices representing circuit par-
titions (A1-An in Fig. 1), its interconnections (P in Fig.1), 
and border submatrices (B1-Bn and C1-Cn in Fig. 1).

In the next sections, you can understand how SmartSpice 
HPP takes advantage of BBD forms to speed up simulation 
time.

3. Circuit Partitioning on SmartSpice HPP
A distinguishing characteristic of SmartSpice HPP is its 
partition-based simulation. Circuit partitioning is current-
ly available through two different methods:

1.	Graph circuit partitioning: topology-oriented partition-
ing, automatically computed based on the circuit topology

2.	Hierarchical circuit partitioning: topology-oriented par-
titioning, guided by the circuit’s user-defined hierarchy.

Notice that we are referring to circuit partitioning (which 
is tied to its physical interpretation), as opposed to 
matrix partitioning (which is tied to its mathematical 
interpretation). Even so, SmartSpice HPP performs 
circuit partitioning (either hierarchical- or graph-based) 
in a BBD-like structure. In this case, each partition will be 
processed separately by the HPP engine and can speed 
up the matrix loading stage, linear solver operations, as 
well as general transient simulation steps.

4. Matrix Partitioning on SmartSpice HPP
In SmartSpice HPP, the user can also control which matrix 
partitioning approach is used. Two partitioning options are 
supported on SmartSpice HPP:

1.	Metis-based matrix partitioning: the solver activates 
the Metis nested dissection algorithm on its preordering 
step and uses the information from Metis to create a suit-
able matrix in BBD form

2.	Circuit-based matrix partitioning: the solver reuses 
the information about the BBD structure from the cir-
cuit partitioning, if available, to create a matrix in BBD 
form.

5. Block Isomorphism and Block Latency
SmartSpice HPP can also take advantage of block isomor-
phism and block latency to speed up simulation. These two 
techniques are briefly explained in the following.

Multiple blocks are said to be isomorphic if they have the 
same size, internal states, and external stimuli, consider-
ing the given tolerances. During a transient simulation, 
the HPP engine dynamically checks the potentially iso-
morphic blocks if this feature is enabled. Then, for each 
group of isomorphic blocks, only one block is simulated, 
and its results are reused to its other isomorphic blocks. 

A block is said to be latent if its internal states stay within 
the given tolerances for some consecutive iterations during 
a transient analysis. If a block is found to be latent for the time 
point being calculated, this block will not be recomputed. In-
stead, its internal data is reused from the previous time point.

6. SmartSpice HPP Along with Jivaro
When running post-layout simulation, another way to best 
make use of SmartSpice HPP and speed up simulation 
time while keeping accuracy under control is to employ 
Jivaro, provided with SmartSpice, for parasitic reduction. 
In this case, even if the user does not have access to 
Jivaro as a standalone tool, the patented mathematical 
approaches from the Jivaro engine sit inside SmartSpice 
and perform Model Order Reduction (MOR) to reduce 
the parasitic complexity while preserving high accuracy.

7. How to use SmartSpice HPP
SmartSpice HPP can be enabled by running “smartspice 
-hpp”. By default, other general-purpose SPICE options 
are also set from this flag, as follows:

• hsimspeed=3

• bypass=2

• expbypass=1e-3

	 • cflflag=1

SmartSpice HPP is available on both Windows and 
Linux. However, as a general limitation, it only supports 
transient analyses. Also, only a limited number of SPICE 
models are supported. (A list of supported models in 
HPP mode can be found in SmartSpice User Manual.)

In the following, you will find more details about solver 
compatibility in SmartSpice HPP, as well as how to use 
circuit partitioning, matrix partitioning, isomorphism, 
latency, and Jivaro reduction.

Solver Compatibility in SmartSpice HPP
SmartSpice HPP supports all the solvers currently 
implemented in SmartSpice, namely XMS, SPEEDS, 
and SPS. However, in order to extract the most out of 
the HPP functionality, we strongly recommend the SPS 
solver to be used. This can be achieved either by using 
a netlist option:

	 .option solver = sps

or by a command-line argument (which forces the SPS 
solver and overrides any “.option solver” statement set 
in the netlist):

	 -forcesolver sps

The SPS solver is required for the following features: 
matrix partitioning, isomorphism, and latency. Other 
solvers do not currently support these features.
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Using Circuit Partitioning
In SmartSpice HPP, graph partitioning is set by default. If 
the user would rather use hierarchical partitioning, then 
“.option user_hier_level” needs to be set. The list of op-
tions relevant for each partitioning mode can be found in 
Table 1. The referred circuit partitioning modes will only 
work if the following lists of requirements are met.

Graph partitioning requirements:

	 • None

Hierarchical partitioning requirements:

	 • User-defined hierarchy in the circuit

Using Matrix Partitioning
In SmartSpice HPP, Metis-based matrix partitioning is 
set by default. In order to control matrix partitioning, “.op-
tion matrix_partitioning_mode” should be used, as fol-
lows:

	 • .option matrix_partitioning_mode=0

	 Enables Circuit-based matrix partitioning. (Only this 
mode supports isomorphism and latency.)

	 • .option matrix_partitioning_mode=2 (default)

	 Explicitly enables Metis-based matrix partitioning.

	 • .option matrix_partitioning_mode=3

	 Completely disables matrix partitioning and builds one 
single global matrix. (It can still use multiple threads.)

Notice that in the Metis-based matrix partitioning, the 
interconnect matrix created by the solver can be sub-
stantially smaller than the one provided by the circuit-
based matrix partitioning, so performance could be bet-
ter. However, Metis-based partitioning does not support 
isomorphism and latency.

The referred matrix partition modes will only work if the 
following list of requirements is met.

Matrix partitioning requirements:

	 • SPS Solver

Using Isomorphism and Latency
Block isomorphism is only available in HPP if the hier-
archical circuit partitioning and solver SPS are used. 
Isomorphism is not supported in the graph partitioning 
approach. Table 2 summarizes the list of options that are 
applicable for isomorphism and latency. The list of re-
quirements is presented in the following.

Option Name Option Description

Graph Partitioning Options

hpp_partition_count=<N> Sets desired partitions count to <N> for graph partitioning. By default, the number of parti-
tions is determined automatically for better performance.

Hierarchical Partitioning Options

user_hier_level=<L> Specifies the hierarchy level to split the partitioning into interconnect and block partitions. All 
the cells from top level to level <L-1>, will compose the interconnect partition (P in Fig. 1). All 
the cells from level <L> on, will compose the block partitions (A1-An in Fig. 1). If not defined, 
an auto detection algorithm will calculate <L> to minimize interconnect network and maximize 
number of separate blocks.

hpp_block_size=<S> Specifies the desired size in terms of nodes of block partitions (A1-An in Fig. 1). The default 
value is 100.

hpp_hiersim Enables automatic detection of array blocks (useful for memory designs, flat-panel displays, etc.).
Table 1. The list of options that are applicable for Graph- and Hierarchical-Based circuit partitioning.

Table 2. The list of options that are applicable for Isomorphism and Latency.

Option Name Alias Name Option Description

Isomorphism Options

hpp_block_isomorphism iso Activates isomorphic blocks detection algorithm.

hpp_block_isomorphism_reltol iso_reltol Isomorphism relative voltage error tolerance for blocks. Default is 1e-3.

hpp_block_isomorphism_abstol iso_abstol Isomorphism absolute current error tolerance for blocks. Default is 1e-9.

hpp_block_isomorphism_vntol iso_vntol Isomorphism absolute voltage error tolerance for blocks. Default is 5.e-5.

Latency Options

hpp_block_latency lat Activates latent blocks detection algorithm.

hpp_block_latency_reltol lat_reltol Latency relative voltage error tolerance for blocks. Default is 1e-3.

hpp_block_latency_abstol lat_abstol Latency absolute current error tolerance for blocks. Default is 1e-9.

hpp_block_latency_vntol lat_ vntol Latency absolute voltage error tolerance for blocks. Default is 5.e-5.
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Isomorphism requirements:

•  Solver SPS

•  Hierarchical circuit partitioning

•  Circuit-based matrix partitioning

Latency requirements:

•  Solver SPS

•  Either graph or hierarchical circuit partitioning

•  Circuit-based matrix partitioning

Using Jivaro Reduction
In SmartSpice HPP, no parasitic reduction techniques 
are set by default. If the user is running post-layout 
simulation, we strongly recommend Jivaro for parasitic 
reduction be configured from inside SmartSpice. Table 
3 summarizes the list of options that are applicable for 
Jivaro reduction. The list of requirements is presented in 
the following.

Jivaro reduction requirements:

• None 

8. Experimental Results
In order to demonstrate the benefits of adopting Smart-
Spice HPP on a simulation flow, we present in this sec-
tion some results from experimenting it on a design. For 
this, we used a post-layout, synchronous 2MB (256 64-bit 
words) SRAM, designed in a 45nm technology based on 
BSIM4 models. We simulate common timing and power 
measurements using the entire memory design, i.e., we 
did not apply any design optimization to reduce the circuit 
only to its critical path. The experiments were performed 
on a server with an Intel(R) Xeon(R) CPU E5-2699 v3 @ 
2.30GHz.

Experimental Setup
For these experiments, we exercised the characterization 
of a single memory cell from the entire design. The 
intention was to illustrate how SmartSpice HPP can be 
used when a designer is trying to investigate both timing 
and power behaviors of potentially critical paths from a 
memory design. 

For this, we performed a transient analysis, as follows (Pi 
should be interpreted as the i-th period of interest):

P0: Bring the target cell to a known state by writing a 
1 logic to it

P1: Write a 0 logic to the target cell

P2: Clean the buses by writing a 1 logic to a different 
memory cell

P3: Try to read from the target cell and confirm if the 0 
logic was successfully written

P4: Clean the buses with an idle period

P5: Write a 1 logic to the target cell

P6: Clean the buses by writing a 0 logic to a different 
memory cell

P7: Try to read from the target cell and confirm if the 1 
logic was successfully written

Then, once the simulation is finished, we performed the 
following post-processing measurements:

delay_hl: measure on P3 the clock-to-output delay 
(50% to 50%), when the target signal is transitioning 
from the 1 logic to the 0 logic

delay_lh: measure on P7 the clock-to-output delay 
(50% to 50%), when the target signal is transitioning 
from the 0 logic to the 1 logic

Option Name Option Description

rcl_reduction_type=val Selects RCL netlist reduction engine.
0 - Reduction disabled (default)
2 - “Jivaro”

rcl_reduction_reltol=val Specifies maximal relative error for transient responses of reduced and original 
circuits. (Default: 0.05.)

rcl_reduction_max_freq=val Defines frequency range for which RCL reduction guarantees consistency of tran-
sient responses of reduced and original circuits. The default is 5.0e9 Hz.

rcl_reduction_flow_mode_hpp=val Controls RCL-reduction in Graph-based circuit partitioning.
0 - Reduction before graph partitioning
1 - Reduction after graph partitioning (default)

rcl_reduction_minc=val Defines a threshold for filtering capacitor values. All capacitor values less than 
<val> are replaced by an open circuit. Default is -1 (inactive).

rcl_reduction_minr=val Defines a threshold for filtering resistor values. All resistor values less than <val> 
are replaced by short circuit. Default is 1E-15.

rcl_reduction_maxr=val Defines a threshold for filtering Resistor values. All resistor values greater than 
<val> are replaced by open circuit. Default is 1E15.

Table 3. The list of options that are applicable for Jivaro reduction.
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slew_hl: measure on P3 the slew rate (90% to 10%) 
on the output, when the target signal is transitioning 
from the 1 logic to the 0 logic

slew_lh: measure on P7 the slew rate (10% to 90%) 
on the output, when the target signal is transitioning 
from the 0 logic to the 1 logic

write0_pw: measure the average power from P1 to 
P2, where the 0 logic is being written to the target cell

write1_pw: measure the average power from P5 to 
P6, where the 1 logic is being written to the target cell 

read0_pw: measure the average power from P3 to 
P4, where the 0 logic is being read from the target cell

read1_pw: measure the average power from P3 to 
P4, where the 0 logic is being read from the target cell

Finally, we performed some comparisons between regular 
SmartSpice using its default settings against SmartSpice 
HPP default settings using SPS solver, graph circuit par-
titioning, and Metis-based matrix partitioning. Neither 
block isomorphism nor block latency were used.

Scalability Analysis
In these experiments, we were investigating how much 
more scalable SmartSpice HPP can be when compared 
to regular SmartSpice. For this, we observed regular 
SmartSpice scalability by running it with multiple threads 
(“-P <n>” command-line argument, where <n> is the num-

ber of threads) and comparing its performance against its 
single-thread run. Then, we did the same with SmartSpice 
HPP and extracted the speedup curve of both simulators. 
The results are presented in Fig. 3.

As one can see, SmartSpice HPP with 16 threads can 
be 13.3x faster than SmartSpice HPP single thread. 
This shows that it is up to 8x more scalable than regular 
SmartSpice, which was only 5.3x faster with 16 threads 
compared against its single-thread run.

These results demonstrate how HPP algorithms and its 
simulation strategy can take advantage of the modern 
multicore hardware platforms to speed up all internal 
aspects of transient simulations of analog circuits.

Performance and Accuracy Analyses
In these experiments, we were investigating how much 
faster SmartSpice HPP can be when compared to regular 
SmartSpice, as well as its impact in terms of accuracy. For 
this, we experimented SmartSpice HPP along with two 
other compatible features: (1) Turbo mode, which plays 
with the runtime/accuracy trade-off and (2) Jivaro, for RCL 
reduction. All simulations were run with 16 threads (-P 16). 
The obtained results are presented in Fig. 4.

As it can be seen, just by enabling HPP, the simulation can 
already be about 5x faster with about 2% maximum er-
ror for slew measurements, less than 0.1% for delay mea-
surements, and less than 1% for power measurements. 
By bringing Jivaro in, the speedup goes up to more than 
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Figure 3. Scalability Analysis, comparing regular SmartSpice and SmartSpice HPP.
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8x, while maintaining nearly identical accuracy. Finally, 
by bringing both Jivaro and Turbo together, HPP can be 
about 40x faster than regular SmartSpice, whereas the 
maximum errors for the measurements are kept with less 
than 9% for slew figures, around 2% for delay measure-
ments, and still less than 1% for power figures.

These results demonstrate how effectively SmartSpice 
HPP can integrate with other SmartSpice features (e.g. 
Turbo mode and Jivaro RCL reduction). It also shows 
how much faster HPP can be while keeping an accept-
able accuracy for timing measurements and very high 
accuracy for power measurements. Using SmartSpice 
HPP brought the simulation time from around 90 hours 
down to 2.2 hours. This represents a dramatic increase 
in productivity from a designer perspective.

Notice that, with power becoming one of the most impor-
tant characteristics for circuit designers, followed by delay 
measurements, having a circuit simulator that can deliver 
40x speedup with highly accurate power and delay figures 
can dramatically increase designers’ productivity. This is 
something that FastSPICE engines cannot deliver.

9. Final Remarks
In this section, we present a few recommendations for 
how one can better use SmartSpice HPP. Find more de-
tails in the following subsections.

Circuit Partitioning Recommendations:
A. Hierarchical structure of the circuit is unknown

1)	 Make sure you are using Graph circuit partitioning. 
For this, DO NOT use “.option user_hier_level”.

2)	 Use “.option hpp_partition_count” to control the 
number of partitions.

3)	 Try “.option hpp_block_latency” to increase speed of 
model evaluation.

B. Circuit hierarchy is known and contains many 
cells with the same size (e.g. TFT, SRAM)

1)	 Make sure you are using Hierarchical circuit parti-
tioning. For this, DO use “.option user_hier_level”.

2)	 You can try “.option user_hier_level=<n>” to set the 
hierarchy level, but SmartSpice HPP can also handle 
it automatically.

3)	 “.option hpp_block_size”  might help to protect simu-
lation from very small blocks.

4)	 As “.option hpp_hiersim” provides automatic memory 
arrays detection, it may help to speed up simulation 
time.

5)	 Using “.option hpp_block_isomorphism” and “.option 
hpp_block_latency” may help to speed up the model 
evaluation.
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Other General Recommendations:
SmartSpice HPP should operate in multithreading mode 
(-P N, N>1) to speed up pre- and post-layout circuit tran-
sient simulations. HPP mode implements very scalable 
and optimized model and solver multi-threading algo-
rithms on the latest multicore hardware platforms.

It is recommended to use the SPS solver with non-pivot-
ing reordering algorithm for large circuits. This algorithm 
can be enabled by setting the following options:

.option pivot=1 pivtol=1e-13

As we presented in Section 8, SmartSpice HPP is also 
compatible with both the high performance “-turbo” 
mode and Jivaro for RCL-reduction. These two features 
are highly recommended in the case of large post-layout 
netlist simulations.

10. Summary
This application note introduced the main concepts relat-
ed to SmartSpice HPP and described how to use them. 
Different simulation scenarios have been presented, 
each bringing different accuracy/performance trade-offs. 
The presented simulation results show that SmartSpice 
HPP can be up to 8x more scalable than regular Smart-
Spice. They also show that, when integrated with other 
SmartSpice features, HPP can be up to 40x faster, while 
keeping the user in control of the simulation accuracy. 
SmartSpice HPP can be widely used for fast and accu-
rate transient simulations on a variety of designs, from 
medium- to large-size circuits, either pre- or post-layout.


